## Heat and Steam Steam and Gas Engines

 PRICE 25 CENTS
## CONTENTS

Comparison of Thermometer Scales.4
Weight of Water per Cubic Foot and Heat Units in Water at Various Temperatures ..... 5
Properties of Saturated Steam ..... 6
Steam Pipe Sizes ..... 8
Weight of Steam Discharsed by Safety Valves. ..... 12
Diameters of Steam Sipes and Areas of Steam Ports ..... 13
Steam Engine Design ..... 14
Volume of Cylinders for Different Diameters and Strokes ..... 18
Dimensions of Piston Rings. ..... 21
Dimensions of Stuffing Boxes and Glands. ..... 22
Pitch of Bolts in Water and Steam Juints. ..... 23
Setting Corliss Engine Valve Gears. ..... 24
Condenser and Air Pump Data ..... 28
Direct-connected Engine and Generator Bases ..... 33
Horsepower of Gasoline Engines ..... 34
Proportions of Alntomobile Crankshafts. ..... 36
The Industrial Press, 49-55 Lafayette Stieet, New YorkPublishers of MACHINERY


# MACHINERY'S DATA SHEET SERIES 

COMPILED FROM MACHINERY'S MONTHLY DATA<br>SHEETS AND ARRANGED WITH<br>EXPLANATORY NOTES

## No. 15

## Heat and Steam Steam and Gas Engines

## CONTENTS

Comparison of Thermometer Scales. ..... 4
Weight of Water per Cubic Foot and Heat Units in Water at Various Temperatures ..... 5
Properties of Saturated Steam ..... 6
Steam Pipe Sizes ..... 8
Weight of Steam Discharged by Safety Valves ..... 12
Diameters of Steam Pipes and Areas of Steam Ports ..... 13
Steam Engine Design ..... 14
Volume of Cylinders for Different Diameters and Strokes ..... 18
Dimensions of Piston Rings ..... 21
Dimensions of Stuffing Boxes and Glands ..... 22
Pitch of Bolts in Water and Steam Joints ..... 23
Setting Corliss Engine Valve Gears ..... 24
Condenser and Air Pump Data ..... 28
Direct-connected Engine and Generator Bases ..... 33
Horsepower of Gasoline Engines ..... 34
Proportions of Automobile Crankshafts. ..... 36

. 15

In the following pages are compiled a number of diagrams and concise tables relating to heat, steam, steam and gas engines, carefully selected from Machinery's monthly Data Sheets, issued as supplements to the Engineering and Railway editions of Machinery since Septemper, 1898. Additional tables also are included which are published here for the first time. In order to enhance the value of the tables and dagrams, brief explanatory notes have been provided wherever necessary. In a note at the foot of the tables, reference is made to the page on which the explanatory note relating to the table appears.


## STEAM AND GAS ENGINES

## Comparison of Thermometer Scales

There are three thermometers in common use, the Fahrenheit, the Celsius, and the Réaumur. The Fahrenheit thermometer is in general use in the United States and Great Britain, and in other English-speaking countries. The Celsius thermometer, commonly known as the Centigrade, is used for most scientific purposes, and in nearly all of the countries on the European continent. The Réaumur thermometer is largely used in Germany. On the scale of the Fahrenheit thermometer, the freezing point of water is taken at 32 degrees, and the boiling point at 212 degrees. On the scale of the Celsius or Centigrade thermometer, the freezing point is taken at zero (0 degree) and the boiling point at 100 degrees. On the scale of the Réaumur thermometer, the freezing point is taken at zero and the boiling point at 80 degrees.

The following rules may prove helpful in transferring temperatures in Centigrade and Réaumur to degrees Fahrenheit.

1. To change a temperature given in degrees Centigrade to degrees Fahrenheit, multiply the number of degrees Centigrade by nine-fifths, and add 32 degrees. The sum is the temperature in degrees Fahrenheit.
2. To change a temperature given in degrees Réaumur to degrees Fahrenheit, multiply the number of degrees Réaumur by nine-fourths, and add 32 degrees. The sum is the temperature in degrees Fahrenheit.

On page 4 is given a table for rapid comparison of thermometer scales for ordinary temperatures up to the boiling
point of water. For example, a temperature of 34 degrees Centigrade, it will be seen from tnis table, corresponds to a temperature of 27.2 degrees Reaumur and 93.2 degrees Fahrenheit.

## Properties of Saturated Steam

The amount of heat required for raising water to any given temperature and for transforming water into steam is measured in heat units or British thermal units. A British thermal unit is defined as the quantity of heat required to raise the temperature of one pound of water one degree F., at or near the temperature of maximum density of water (39.1 degrees F.).

On page 5 is given a table of the weight of water per cubic foot, and of heat units in water, for temperatures between 32 and 212 degrees F. The column of heat units gives the number of heat units required for raising the water to any given temperature from 32 degrees F .

On pages 6 and 7 are given the most commonly required properties of saturated steam. The temperature of saturated steam depends upon the pressure under which it is generated, the temperature being the same as that of the water from which it is generated. When steam is generated in a closed vessel, the pressure increases with the increasing temperature of the water with which it is in contact, and from which it is generated.

The total heat in steam is made up of three quantities:

1. The heat required to raise the temperature of the water to the temperature of the steam.
2. The heat required to evaporate or (Continued on page 20.)

COMPARISOK OF THERMOMETER SCALES．

| 䔍 長 © | 唇 |  |  | 立 |  |  | 号 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| －30 | $-24.0$ | $-22.0$ | 14 | 11.2 | 57.2 | 58 | 46.4 | 136.4 |
| －28 | $-22.4$ | －18．4 | 16 | 12.8 | 60.8 | 60 | 48.0 | 140.0 |
| $-26$ | $-20.8$ | $-14.8$ | 18 | 14.4 | 64.4 | 62 | 49.6 | 143.6 |
| －24 | －19．2 | $-11.2$ | 20 | 16.0 | 68.0 | 64 | 51.2 | 147.2 |
| －22 | $-17.6$ | $-7.6$ | 22 | 17.6 | 71.6 | 66 | 52.8 | 150.8 |
| $-20$ | $-16.0$ | $-4,0$ | 24 | 19.2 | 75.2 | 68 | 54.4 | 154，4 |
| －18 | $-14.4$ | －0．4 | 26 | 20.8 | 78.8 | 70 | 56.0 | 158.0 |
| －16 | $-12.8$ | 3.2 | 28 | 22.4 | 82.4 | 72 | 57.6 | 161.6 |
| $-14$ | $-11.2$ | 6.8 | 30 | 24.0 | 86.0 | 74 | 59.2 | 165.2 |
| $-12$ | $-9.6$ | 10.4 | 32 | 25.6 | 89.6 | 76 | 60.8 | 168.8 |
| $-10$ | －8，0 | 14.0 | 34 | 27.2 | 93.2 | 78 | 62.4 | 172.4 |
| －8 | －6．4 | 17，6 | 36 | 28.8 | 96.8 | 80 | 64.0 | 176.0 |
| －6 | $-4.8$ | 21，2 | 38 | 30.4 | 100.4 | 82 | 65.6 | 179，6 |
| －4 | $-3.2$ | 24.8 | 40 | 32.0 | 104.0 | 84 | 67.2 | 183.2 |
| －2 | $-1.6$ | 28.4 | 42 | 33.6 | 107.6 | 86 | 68.8 | 186.8 |
| 0 | 0.0 | 32.0 | 44 | 35.2 | 111.2 | 88 | 70.4 | 190.4 |
| 2 | 1.6 | 35.6 | 46 | 36.8 | 114.8 | 90 | 72.0 | 194.0 |
| 4 | 3.2 | 39.2 | 48 | 38.4 | 118.4 | 92 | 73.6 | 197.6 |
| 6 | 4.8 | 42.8 | 50 | 40.0 | 122.0 | 94 | 75.2 | 201.2 |
| 8 | 6.4 | 46.4 | 52 | 41.6 | 125.6 | 96 | 76.8 | 204.8 |
| 10 | 8.0 | 50.0 | 54 | 43.2 | 129.2 | 98 | 78.4 | 208.4 |
| 12 | 9.6 | 53.6 | 56 | 44.8 | 132.8 | 100 | 80.0 | 212.0 |

Machinery＇s Data Sheet No．21．Explanatory note：Page． 3.

| Weight of Water per Cubic Foot and Heat Units in Water between $32^{\circ}$ and $212^{\circ} \mathrm{F}$. |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) |  |  |  |  |  |  |  | (ex |  |  | ¢ |
| 32 | 62.42 | 0.00 | 78 | 62.25 | 46.03 | 124 | 61.67 | 92.17 | 170 | 60.77 | 138.45 |
| 34 | 62.42 | 2.00 | 80 | 62.23 | 48.04 | 126 | 61.63 | 94.17 | 172 | 60.73 | 140.47 |
| 36 | 62.42 | 4.00 | 82 | 62.21 | 50.04 | 128 | 61.60 | 96.18 | 174 | 60.68 | 142.49 |
| 38 | 62.42 | 6.00 | 84 | 62.19 | 52.04 | 130 | 61.56 | 98.19 | 176 | 60.64 | 144.51 |
| 40 | 62.42 | 8.00 | 86 | 62.17 | 54.05 | 132 | 61.52 | 100.20 | 178 | 60.59 | 146.52 |
| 42 | 62,42 | 10.00 | 88 | 62,15 | 56.05 | 134 | 61.49 | 102.21 | 180 | 60.55 | 148.54 |
| 44 | 62,42 | 12.00 | 90 | 62.13 | 58.06 | 136 | 61.45 | 104.22 | 182 | 60.50 | 150.56 |
| 46 | 62.42 | 14.00 | 92 | 62.11 | 60.06 | 138 | 61.41 | 106.23 | 184 | 60.46 | 152.58 |
| 48 | 62.41 | 16.00 | 94 | 62.09 | 62.06 | 140 | 61.37 | 108.25 | 186 | 60.41 | 154.60 |
| 50 | 62.41 | 18.00 | 96 | 62.07 | 64.07 | 142 | 61.34 | 110.26 | 188 | 60.37 | 156,62 |
| 52 | 62.40 | 20.00 | 98 | 62.05 | 66.07 | 144 | 61.30 | 112.27 | 190 | 60.32 | 158.64 |
| 54 | 62.40 | 22.01 | 100 | 62.02 | 68.08 | 146 | 61.26 | 114.28 | 192 | 60.27 | 160.67 |
| 56 | 62.39 | 24.01 | 102 | 62.00 | 70.09 | 148 | 61.22 | 116.29 | 194 | 60.22 | 162.69 |
| 58 | 62.38 | 26.01 | 104 | 61.97 | 72.09 | 150 | 61.18 | 118.31 | 196 | 60.17 | 164.71 |
| 60 | 62.37 | 28.01 | 106 | 61.95 | 74.10 | 152 | 61.14 | 120.32 | 198 | 60.12 | 166.73 |
| 62 | 62.36 | 30.01 | 108 | 61,92 | 76.10 | 154 | 61.10 | 122.33 | 200 | 60.07 | 168.75 |
| 64 | 62.35 | 32.01 | 110 | 61.89 | 78.11 | 156 | 61.06 | 124.35 | 202 | 60.02 | 170.78 |
| 65 | 62.34 | 34.02 | 112 | 61.86 | 80.12 | 158 | 61.02 | 126.36 | 204 | 59.97 | 172.80 |
| 68 | 62.33 | 36.02 | 114 | 61.83 | 82.13 | 160 | 60.98 | 128.37 | 206 | 59.92 | 174.83 |
| 70 | 62.31 | 38.02 | 116 | 61.80 | 84.13 | 162 | 60,94 | 130.39 | 208 | 59.87 | 176.85 |
| 72 | 62.30 | 40.02 | 118 | 61.77 | 86.14 | 164 | 60,90 | 132.41 | 210 | 59.82 | 178.87 |
| 74 | 62.28 | 42.03 | 120 | 61.74 | 88.15 | 166 | 60.85 | 134.42 | 212 | 59.76 | 180,90 |
| 76 | 62.27 | 44.03 | 122 | 61.70 | 90.16 | 168 | 60.81 | 136.44 |  |  |  |


| PROPERTIES OF SATURATED STEAM. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\dot{q}$ |  |  |  |  | Total Heat | bove $32^{\circ} \mathrm{F}$. | $\stackrel{5}{5}$ |
|  |  |  |  |  |  |  |  |
| 1 | -27.9 | 102.1 | . 003 | 334.23 | 70.09 | 1113.1 | 1043.0 |
| 5 | -19.7 | 162.3 | . 014 | 72.50 | 130.7 | 1131.4 | 1000.7 |
| 10 | -9.6 | 193.2 | . 026 | 37.80 | 161.9 | 1140.9 | 979.0 |
| 14.7 | 0. | 212.0 | . 038 | 26.36 | 180.9 | 1146.6 | 965.7 |
| 15 | . 3 | 213.0 | . 039 | 25.87 | 181.9 | 1146.9 | 965.0 |
| 20 | 5.3 | 227.9 | . 050 | 19.72 | - 197.0 | 1151.5 | 954.4 |
| 25 | 10.3 | 240.0 | . 063 | 15.99 | 209.3 | 1155.1 | 945.8 |
| 30 | 15.3 | 250.2 | . 074 | 13.48 | 219.7 | 1158.3 | 938.9 |
| 35 | 20.3 | 259.2 | . 086 | 11.66 | 228.8 | 1161.0 | 932.2 |
| 40 | 25.3 | 267.1 | . 097 | 10.28 | 236.9 | 1163.4 | 926.5 |
| 45 | 30.3 | 274.3 | . 109 | 9.21 | 244.3 | 1165.6 | 921.3 |
| 50 | 35.3 | 280.9 | . 120 | 8.34 | 251.0 | 1167.6 | 916.6 |
| 55 | 40.3 | 286.9 | . 131 | 7.63 | 257.2 | 1169.4 | 912.3 |
| 60 | 45.3 | 292.5 | . 142 | 7.03 | 262.9 | 1171.2 | 908.2 |
| 65 | 50.3 | 297.8 | . 153 | 6.53 | 268.3 | 1172.8 | 904.5 |
| 70 | 55.3 | 302.7 | . 164 | 6.09 | 273.4 | 1174.3 | 900.9 |
| 75 | 60.3 | 307.4 | . 175 | 5.71 | 278.2 | 1175.7 | 897.5 |
| 80 | 65.3 | 311.8 | . 186 | 5.37 | 282.7 | 1177.0 | 894.3 |
| 85 | 70.3 | 316.0 | . 197 | 5.07 | 287.0 | 1178.3 | 891.3 |
| 90 | 75.3 | 320.0 | . 208 | 4.81 | 291.2 | 1179.6 | 888.4 |
| 95 | 80.3 | 323.9 | . 219 | 4.57 | 295.1 | 1180.7 | 885.6 |
| 100 | 85.3 | 327.6 | . 230 | 4.36 | 298.9 | 1181.8 | 882.9 |
| 110 | 95.3 | 334.5 | . 251 | 3.98 | 306.1 | 1184.0 | 877.9 |
| 120 | 105.3 | 341.0 | . 272 | 3.67 | 312.8 | 1185.9 | 873.2 |
| 130 | 115.3 | 347.1 | . 294 | 3.41 | 319.1 | 1187.8 | 868.7 |
| 140 | 125.3 | 352.8 | . 315 | 3.18 | 325.0 | 1189.5 | 864.6 |
| 150 | 135.3 | 358.2 | . 336 | 2.98 | 330.6 | 1191.2 | 860.6 |
| 160 | 145.3 | 363.3 | . 357 | 2.80 | 335.9 | 1192.7 | 856.9 |

PROPERTIES OF SATURATED STEAM (Continued).

|  |  |  |  |  | Total Heat above $32{ }^{\circ} \mathrm{F}$. |  | Latent Heat,Heat Units. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| 170 | 155.3 | 368.2 | . 378 | 2.65 | 340.9 | 1194.2 | 853.3 |
| 180 | 165.3 | 372.8 | . 398 | 2.51 | 345.8 | 1195.7 | 849.9 |
| 190 | 175.3 | 377.3 | . 419 | 2.39 | 350.4 | 1197.0 | 846.6 |
| 200 | 185.3 | 381.6 | . 440 | 2.27 | 354.9 | 1198.3 | 843.4 |
| 210 | 195.3 | 385.7 | . 461 | 2.17 | 359.2 | 1199.6 | 840.4 |
| 220 | 205.3 | 3899.7 | .485 | 2.06 | 362.2 | 1200.8 | 838.6 |
| 230 | 215.3 | 393.6 | . 506 | 1.98 | 366.2 | 1202.0 | 835.8 |
| 340 | 225.3 | 397.3 | . 527 | 1.90 | 370.0 | 1203.1 | 833.1 |
| 250 | 235.3 | 400.9 | . 548 | 1.83 | 373.8 | 1204.2 | 830.5 |
| 260 | 245.3 | 404.4 | . 569 | 1.76 | 377.4 | 1205.3 | 827.9 |
| 270 | 255.3 | 407.8 | . 589 | 1.70 | 380.9 | 1206.3 | 825.4 |
| 280 | 265.3 | 411.0 | . 610 | 1.64 | 384,3 | 1207.3 | 823.0 |
| 290 | 275.3 | 414.2 | .630 | 1.585 | 387.7 | 1208.3 | 820.6 |
| 300 | 285.3 | 417.4 | .651 | 1.53b | 390.9 | 1209.2 | 818.3 |
| 350 | 335.3 | 432.0 | . 755 | 1.325 | 406.3 | 1213.7 | 807.5 |
| 400 | 385.3 | 444.9 | . 857 | 1.167 | 419.8 | 1217.7 | 797.9 |
| 450 | 435.3 | 456.6 | . 959 | 1.042 | 432.2 | 1221.3 | 789.1 |
| 500 | 485.3 | 467.4 | 1.062 | . 942 | 443.5 | 1224.5 | 781.0 |
| 550 | 535.3 | 477.5 | 1.164 | . 859 | 454.1 | 1227.6 | 773.5 |
| 600 | 585.3 | 486.9 | 1.266 | . 790 | 464.2 | 1230.5 | 766.3 |
| 650 | 635.3 | 495.7 | 1.368 | .731 | 473.6 | 1233.2 | 759.6 |
| 700 | 685.3 | 504.1 | 1,470 | .680 | 482.4 | 1235.7 | 753.3 |
| 750 | 735.3 | 512.1 | 1.572 | .636 | 490.9 | 1238.0 | 747.2 |
| 800 | 785.3 | 519.6 | 1.674 | .597 | 498.9 | 1240.3 | 741,4 |
| 850 | 835.3 | 526.8 | 1.776 | . 563 | 506.7 | 1242.5 | 735.8 |
| 900 | 885.3 | 533.7 | 1.878 | . 532 | 514.0 | 1244.7 | 730.6 |
| 950 | 935.3 | 540.3 | 1.980 | . 505 | 521,3 | 1246.7 | 725.4 |
| 1000 | 985.3 | 546.8 | 2.082 | $\cdots .480$ | 528.3 | 1248.7 | 720.3 |

STEAM PIPE SIZES—1

| Table I- Flow of Steam in Pounds per Minute through Pipes 100 feet in Length. Drop in Pressure (Pounds) in 100 teet Length of Pipe. | Drop in Pressure (Pounds) in 100 teet Length of Pipe. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pipe | $\frac{1}{4}$ | $\frac{1}{2}$ | $3 / 4$ | 1 | $1 \frac{1}{2}$ | 2 | 3 | 4 | 5 |
| 1 | 0.44 | 0.63 | 0.78 | 0.91 | 1.1 | 1.3 | 1.7 | 2.0 | 2.3 |
| $1 \frac{1}{4}$ | 0.81 | 1.2 | 1.4 | 1.7 | 2.1 | 2.4 | 3.0 | 3.6 | 4.1 |
| $1 \frac{1}{2}$ | 1.6 | 1.9 | 2.3 | 2.7 | 3.4 | 3.9 | 4.9 | 5.9 | 6.8 |
| 2 | 2.9 | 4.2 | 5.2 | 5.9 | 7.4 | 8.6 | 10.9 | 13.0 | 14.9 |
| $2 \frac{1}{2}$ | 5.3 | 7.5 | 9.3 | 10.8 | 13.4 | 15.6 | 19.7 | 23.4 | 26.9 |
| 3 | 8.6 | 12.3 | 15.2 | 17.6 | 21.8 | 25.4 | 32.0 | 31.8 | 43.7 |
| $3 \frac{1}{2}$ | 12.9 | 18.3 | 22.6 | 26.3 | 32.5 | 37.9 | 47.8 | 56.9 | 65.3 |
| 4. | 18.1 | 25.7 | 31.8 | 36.9 | 45.8 | 53.3 | 67.2 | 80.1 | 91.9 |
| 5 | 32.2 | 45.7 | 56.6 | 65.7 | 81.3 | 94.7 | 120.0 | 142.0 | 163.0 |
| 6 | 51.7 | 73.3 | 90.9 | 106 | 131 | 152 | 192 | 229 | 262 |
| 7 | 76.7 | 109 | 135 | 157 | 194 | 226 | 285 | 339 | 390 |
| 8 | 108 | 154 | 190 | 222 | 274 | 319 | 402 | 478 | 549 |
| 9 | 147 | 209 | 258 | 299 | 371 | 432 | 54.5 | 649 | 745 |
| 10 | 192 | 273 | 339 | 393 | 487 | 567 | 715 | 852 | 977 |
| 12 | 305 | 434 | 537 | 623 | 771 | 899 | $1 / 30$ | 1350 | 1550 |
| 15 | 535 | 761 | 942 | 1090 | 1350 | 1580 | 1990 | 2370 | 2720 |

STEAM PIPE SIZES-II

Table II-Factors with which to multiply the figures obtained in Table I, for initial pressures over 10 pounds, to obtain the flow of steam in pounds per minute through pipes 100 ft in length.

| Drop in <br> Pressure, <br> (Pounds) | Initial Pressure (Pounds). |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 | 20 | 30 | 40 | 60 | 80 |  |
| $\frac{1}{4}$ | 1.27 | 1.49 | 1.68 | 1.84 | 2.13 | 2.38 |  |
| $\frac{1}{2}$ | 1.26 | 1.48 | 1.66 | 1.83 | 2.11 | 2.36 |  |
| 1 | 1.24 | 1.46 | 1.64 | 1.80 | 2.08 | 2.32 |  |
| 2 | 1.21 | 1.41 | 1.59 | 1.75 | 2.02 | 2.26 |  |
| 3 | 1.17 | 1.37 | 1.55 | 1.70 | 1.97 | 2.20 |  |
| 4 | 1.14 | 1.34 | 1.51 | 1.66 | 1.92 | 2.14 |  |
| 5 | 1.12 | 1.31 | 1.47 | 1.62 | 1.87 | 2.09 |  |

Table III- Factors with which to multiply the figures obtained in Table I, for length of pipe smaller or greater than 100 feet, to obtain the flow of steam in pounds per minute.

| Feet | Factor | Feet | Factor | Feet | Factor | Feet | Factor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 3.16 | 120 | 0.91 | 275 | 0.60 | 600 | 0.40 |
| 20 | 2.24 | 130 | 0.87 | 300 | 0.57 | 650 | 0.39 |
| 30 | 1.82 | 140 | 0.84 | 325 | 0.55 | 700 | 0.37 |
| 40 | 1.58 | 150 | 0.81 | 350 | 0.53 | 750 | 0.36 |
| 50 | 1.41 | 160 | 0.79 | 375 | 0.51 | 800 | 0.35 |
| 60 | 1.29 | 170 | 0.76 | 400 | 0.50 | 850 | 0.34 |
| 70 | 1.20 | 180 | 0.74 | 425 | 0.48 | 900 | 0.33 |
| 80 | 1.12 | 190 | 0.72 | 450 | 0.47 | 950 | 0.32 |
| 90 | 1.05 | 200 | 0.70 | 475 | 0.40 | 1000 | 0.31 |
| 100 | 1.00 | 225 | 0.66 | 500 | 0.45 |  |  |
| 110 | 0.95 | 250 | 0.63 | 550 | 0.42 |  |  |

STEAM PIPE SIZES-III

D'Arcy's formulas for flow of steam in pipes, used for calculating table I.


Contributed by Chis. L. Hubbard, Machinery's Data Sheet No. 109. Explanatory note: Page 20.
STEAM PIPE SIZES-IV

|  | Table I. |  | Table $\bar{T}$ |  |  | Table VII. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 505550000005000 |  |  | Single pipe Risers. Based on velocities of 10 and 15 feet per second. |  |  | Return Pipes. |  |  |
|  |  |  | Diam. | Square feet of direct radiation | Square feet of direct radiation | Steam Pipe | Dry Return | sealed <br> Return |
|  |  |  | Riser | 10 feet per sec., velocity | $\begin{gathered} 15 \text { feet per sec. } \\ \text { velocity } \end{gathered}$ |  |  |  |
|  |  |  | 1 | 0 |  | 1 | / | $3 / 4$ |
|  |  |  |  |  |  | $1 \frac{1}{4}$ | 1 | 1 |
|  |  |  | $1 \frac{1}{4}$ | 60 | 90 | $1 \frac{1}{2}$ | $1 \frac{1}{4}$ | $/$ |
|  |  |  |  |  |  | 2 | $1 \frac{1}{2}$ | $1 \frac{1}{4}$ |
|  |  |  | 1 |  |  | $2 \frac{1}{2}$ | 2 | $1 \frac{1}{2}$ |
| 1 | 60 | 40 | 2 |  |  | 3 | $2 \frac{1}{2}$ | 2 |
| $1 \frac{1}{4}$ | 100 | 72 |  |  |  | 31 | $2 \frac{1}{1}$ | 2 |
| $1 \frac{1}{2}$ | 135 | 95 | 2 | 130 | 200 | 32 | $2 \overline{2}$ | 2 |
| 2 | 370 | 260 |  |  |  | 4 | 3 | $2 \frac{1}{2}$ |
| $2 \frac{1}{2}$ | 670 | 475 |  |  |  | 5 | 3 | $2 \frac{1}{2}$ |
| 3 | 1080 | 775 | $2 \frac{1}{2}$ | 190 | 290 |  | 31 |  |
| $3 \frac{1}{2}$ | 1025 | 1160 |  |  |  | 6 | 32 | 3 |
| 4 | 2280 | 1620 |  | - 290 |  | 7 | $3 \frac{1}{2}$ | 3 |
| 5 | 4060 | 2900 |  |  |  | 8 | 4 | $3 \frac{1}{2}$ |
| 6 | .6520 | 4660 |  |  |  | 9 | 5 | 31 |
| 7 | 9660 | 6900 | $3 \frac{1}{2}$ | 390 | 590 | 9 | 5 | 2 |
| 8 | 13600 | 9720 |  |  |  | 10 | 5 | 4 |

## WEIGHT OF STEAM DISCHARGED BY SAFETY VALVES

| Diameter of Safety Valve, Inches | Discharge Area, Square Inches | Steam discharged per hour, in Pounds |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Gage Pressure |  |  |  |  |  |
|  |  | 100 | 125 | 150 | 175 | 200 | 250 |
|  |  | Absolute Pressure |  |  |  |  |  |
|  |  | 115 | 140 | 165 | 190 | 215 | 265 |
| 1 | 0.22 | 1100 | 1340 | 1580 | 1670 | 1910 | 2530 |
| $1 \frac{1}{2}$ | 0.33 | 1650 | 2010 | 2370 | 2510 | 2870 | 3795 |
| 2 | 0.44 | 2200 | 2680 | 3150 | 3350 | 3825 | 5060 |
| $2 \frac{1}{2}$ | 0.55 | 2750 | 3350 | 3940 | $4 / 80$ | 4780 | 6325 |
| 3 | 0.66 | 3300 | 4020 | 4730 | 5020 | 5740 | 7590 |
| $3 \frac{1}{2}$ | 0.77 | 3850 | 4685 | 5520 | 5850 | 6695 | 8855 |
| 4 | 0.88 | 4400 | 5350 | 6310 | 6690 | 7650 | 10120 |
| $4 \frac{1}{2}$ | 0.99 | 4950 | 6020 | 7100 | 7530 | 8610 | / /385 |
| 5 | 1.10 | 5500 | 6690 | 7890 | 8365 | 9565 | 12650 |
| 6 | 1.32 | 6600 | 8030 | 9460 | 10040 | 11075 | 15180 |
| 7 | 1.54 | 7700 | 9370 | 11040 | 11710 | 13390 | 17710 |
| 8 | 1.76 | 8800 | 10700 | 12620 | 13385 | 15305 | 20240 |
| 9 | 1.98 | 9900 | 12050 | ' 14200 | 15060 | 17215 | 22770 |
| 10 | 2.20 | 11000 | 13390 | 15770 | 16730 | 19130 | 25300 |

The table above has been calculated for valve lift of 0.1 inch. If the lift is changed, the values given above should be multiplied by the factors below: Valv

DIAMETERS OF STEAM PIPES AND AREAS OF STEAM PORTS


## STEAM ENGINE DESIGN-I

Cylinder:- In proportianing the cylinder for any given power of engine the following data is usually turnished the designer: boiler pressure, back pressure, cut-off, clearance and piston speed.

First, find the mean effective pressure (M. E. P.) for the given conditions by the formula M.E.P. $=\frac{0.9 P(1+2.3 \log R)}{R}-0.9 p$, in which
$P=$ boiler pressure (absolute), $R=$ "actual"ratio of expansion $=$ $\frac{1+\text { clearance }}{\text { clearance }+ \text { cut-off }}$, in which the clearance and cut-off are expressed as a percentage of the stroke, $p=$ back pressure (absolute). Area of Piston:- $A=\frac{33000 \text { H.P. }}{\text { M.E.P. xpiston speed, }}$, in which $A=$ area of piston in square inches. The diameter is usually made even inches and the piston speed changed to give the same H.P. This is done by the follow ing equation: $\frac{\text { First piston speed } x \text { first piston ared }}{n e w ~ p i s t o n ~ a r e a ~}=$ new piston speed. In calculating the effective piston area we must allow for the area of the piston rod upon one side of the piston: $A_{1}=\frac{2 A-a}{2}$, in which $A_{1}=$ effective area of piston, $A=$ actual area of piston, $a=$ area of piston rod. After assuming a piston diameter of even inches we must substitute its "effective "area in the equation for finding the new piston speed.

Thickness of Cylinder Shell:- $z=0.0003 \mathrm{pd}+0.8$, in which $t=$ thickness of shell in inches, $d=$ diameter of cylinder in inches, $p=$ boiler pressure per square inch. The thickness of flanges may be made 1.37; the metal of the steam chest and passages 0.87; and the valve seat about $1.25 t$.

Counterbore:- Depth of counterbore shoulder $\frac{3}{16}$ inch in cylinders I2 to 10 inches in diameter. The length should be such that $\frac{1}{3}$ of packing ring of piston passes over edge of counterbore at end of stroke.

STEAM ENGINE DESIGN-II

Cylinder Heads :- The thickness may be 1.257 (see sheet I), with stiffening ribs depending on diameter.

Cylinder Head Bolfs:- $n=0.705 d_{1}+2.18$, in which $n=$ number of bolts, $d_{1}=$ diameter of counterbore. The size of bolts should be such that the total load due to steam pressure and "screwing up"shall not exceed 7000 pounds per square inch, for mild steel.

Total pressure on head $=p\left(\frac{\pi d_{1}{ }^{2}}{4}\right)$, in which $p=$ boiler pressure per square inch, $d_{1}=$ diameter of counterbore. The pressure due to screwing up may be taken as 2500 pounds upon each stud.

Diameter of Bolt Circle:- $D_{1}=d_{1}+2 Z+d_{\text {, }}$ in which $D_{1}=$ diameter of. bolt circle, $d_{1}=$ diameter of counterbore, $z=$ thickness of cylinder wall; $d=$ diameter of bolts. Diameter of cylinder head $=D_{1}+2 d+\frac{5}{4}$ inch. Area of Port5:- These are based on the velocity of steam flow through them, as follows :- Steam Ports 8000 feet per minuite, Exhaust Ports 6000 feet per minute.

Piston:- For horizontal engines the thickness of piston may be found by the formula $T=\sqrt[4]{L X D}$ in which $T=$ thickness of piston in inches, $L$ = length of stroke in inches, $D=$ diameter of piston in inches.

Piston Rod:- The area of metal through the weakest part is found by the formula $a=\frac{\pi}{2 f} \times D^{2} \times p$, in which $a=$ area ofmetal in weakest part of rod, $f=10000$ for wrought iron, and 13000 for steel, $D=$ diameter of piston in inches, $p=$ difference in pressure per square inch acting upon the two sides of the piston.

Stiffness of Piston Rod:- The required size of the body of the piston rod may be determined by the formula $d-K \times D \times \sqrt{p}$, in which $d=$ diameter of rod, $K=0.0169$. to 0.0182 for short stroke engines, and 0.02 to 0.0224 for moderately.long stroke horizontal engines, $p=$ difference in pressure per square inch acting upon the two sides of piston.

STEAM ENGINE DESIGN-III

Connecting Rod:- The connecting rod is commonly made from two to four times the length of stroke. Two and one-half to three is an averay?. For round rods the diameter at the center may be taken as $d=a \sqrt{D L \sqrt{p}}+C$, in which $d$ - diameter of rod in inches, $D=$ diameter of cylinder in inches, $L=$ length of rod in feet, $p=$ boiler pressure per square inch, $a=0.15$ for high speed, and 0.18 for moderate speed, $C=\frac{1}{2}$ inch for high speed, and $3 / 4$ inch for moderate speed.

The diameter at the necks may be made about 1.1 times that of the piston rod. In high speed engines the connecting rod is commonly made rectangular in section, and tapered from the crosshead to the crank end to avercome the stresses due to the inertia of the rod. In this case the thickness of the rod ( $z$ ) may be computed by the formuld $z=0.0209 \sqrt{D L \sqrt{p}}+0.47$ in which $D, L$, and $p$ represent the same quantities as before.

Having found the value of $z$, make the depth at the cross-head. 1.5 t , and at the crank pin 2.25 t .

Crank Pin:- This should be designed with sufficient bearing surface to prevent heating, and then checked for strength and rigidity. For the first condition we have $Z=\frac{0.06 ~ H . P .}{L}$, in which $z=$ length of pin in inches, $L=$ length of stroke in feet, $d=\frac{A \times \text { M.E.P. }}{500 Z}$, in which $d=$ diameter of pin in inches, $A=$ area of piston in square inches, M.E.P. $=$ mean effective pressure, $Z=$ length of pin in inches. The pin may be checked for strength as follows, in which the value of $d$ should not exceed that found above, $d=\sqrt[3]{\frac{5.1 P l}{12000}}$, in which $d=$ diameter of pin in inches, $P=$ total bailer pressure on piston in pounds, $l=l$ length of pin in inches.

Crank Arm:- Diameter of hub $=1.80$ to 2D, diameter of eye $=$ $2 d$ to $2.25 d$, length of hub $=10$ to $\% 20$, length of eye $=1.25 d$ to $1.5 d$, in which $D$ = diameter of shaft, and $d=$ diameter of crank pin. The thickness of web is made from 0.5 to 0.6 of the length of hub or eye with which it connects. In the case of cast iron, stiffening webs, the full depth of hub and eye, should be provided.

STEAM ENGINE DESIGN-IV

Valve stem :- $d=\sqrt{\frac{l b p}{F}}$, in which $d$ - diameter of rod in inches, $z=$ length of valve in inches, $b=$ width of valve in inches, $p$-pressure per square inch on valve, $F=12000$ for long steel rods; and 14500 for short steel rods.

Cross Head:- The pressure on the quides may be taken as 40 to 60 pounds per square inch for ordinary lubrication, and 80 to 100 pounds with good Iubrication. $w=$ Ap tan $a$, in which $w=$ total pressure on quides in pounds, $A=$ area of piston in. square inches, $p=$ pressure on piston in pounds per square inch, $a=$ the angle between the connecting rod and the center line of piston rod extended, when connect. ing rod and crank are of right angles.

Wrist Pin :- $d=0.03 \sqrt{m P}$, in which $d=$ diameter of pin in inches, $m=$ factor varying from 1.25 to $1.5, p=$ total pressure on piston in pounds. The length of pin may equal $d$.

Fly wheel:- $W=\frac{C}{D R^{2}}$, in which $W=$ weight of rim per H.P., $D=$ diameter of rim in feet, $A=$ revolutions per minute, $C=5,500,000$ for electric light engines, 5,000,000 for mill engines, 4,000,000 for ordinary engines. The width of rim is determined by required width of belt, from which the thickness may be found by $z=\frac{W}{0.2 G C B}$, in which $t$-thickness of rim in inches, $w=$ total weight of rim in pounds, $c=$ circumference of rim in inches, $B=$ width of rim.
The thickness of the arms is found by the formula $b=\frac{U L}{30 h^{2}}$, in which $b=$ thickness of arm in inches, $h=$ width of arm at hub in inches, $L=$ length of arm in feet, U = load carried by one arm total effective belt tension divided by one-half the number of arms. The value of $h$ is assumed, and $b$ is found by the formula given.

VOLUME OF CYLINDERS, IN CUBIC FEET.

| Diameter, inches. | Stroke in Inches. |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 | 41/2 | 5 | 51/2 | 6 | 64/2 | 7 | 71/2 | 8 | 9 | 10 | 11 |
| 3 | . 0163 | . 0184 | . 0204 | . 0225 | . 0245 |  |  |  |  |  |  |  |
| $31 / 2$ | . 0224 | . 0251 | . 0278 | . 0306 | . 0334 | . 0362 |  |  |  |  |  |  |
| 4 |  |  | . 0363 | . 0400 | . 0436 | . 0472 | . 0508 | . 0544 |  |  |  |  |
| 41/2 |  |  |  | . 0506 | . 0552 | . 0598 | . 0644 | . 0690 | . 0736 |  |  |  |
| 5 |  |  |  |  | . 0681 | . 0738 | . 0795 | . 0851 | . 0909 | . 1022 | . 1135 |  |
| $51 / 2$ | ....... |  |  |  |  | . 0893 | . 0961 | . 1032 | . 1100 | . 1236 | . 1374 | . 1512 |
| 6 | ...... |  |  |  |  |  | . 1145 | . 1227 | . 1308 | . 1472 | . 1635 | . 1800 |
| $61 / 2$ | ...... |  |  |  |  |  |  | . 1440 | . 1535 | . 1726 | . 1917 | . 2120 |
| $71 / 2$ |  |  |  |  |  |  |  |  | . 1781 | . 201 | . 225 | . 245 |
| $8^{8}$ |  |  |  |  |  |  |  |  |  |  | . 291 | . 320 |
| 9 10 |  |  |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |  |  |
| 13 | . ..... |  |  |  |  |  |  |  |  |  |  |  |
| 14 | ...... |  |  |  |  |  |  |  |  |  |  |  |
| 15 16 | ...... |  |  |  |  |  |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |  |  |  |  |  |  |
| 171/2 |  |  |  |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |  |  |
| 181/2 |  |  |  |  |  |  |  |  |  |  |  |  |


| Diameter, inches. | Stroke in Inches. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 12 | 13 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 23 | 30 |
| 3 |  |  |  |  |  |  |  |  |  |  |  |
| $31 / 2$ | . . . $\cdot$ |  |  |  |  |  |  |  |  |  |  |
| $41 / 2$ |  |  |  |  |  |  |  |  |  |  |  |
| ${ }_{5}^{41 / 2}$ |  |  |  |  |  |  |  |  |  |  |  |
| $51 / 2$ |  |  |  |  |  |  |  |  |  |  |  |
| 6 | . 1963 |  |  |  |  |  |  |  |  |  |  |
| $61 / 2$ | . 2300 | . 2490 |  |  |  |  |  |  |  |  |  |
| 71 | . 264 | . 2895 | . 314 |  |  |  |  |  |  |  |  |
| $8^{71 / 2}$ | . 3061 | . 3320 | . 358 | . 408 |  |  |  |  |  |  |  |
| 8 | . 349 | . 378 | . 406 | . 465 |  |  |  |  |  |  |  |
| 9 10 | . 442 | . 479 | . 516 | . 589 | . 662 |  |  |  |  |  |  |
| 10 | . 545 | . 591 | . 636 | . 787 | . 818 |  |  |  |  |  |  |
| 11 | ....... | ..... | . 769 | .879 1.045 | .989 1.175 | 1.10 1.31 | 1.21 1.44 |  |  |  |  |
| 13 |  |  |  | 1.228 | 1.382 | 1.535 | 1.688 |  |  |  |  |
| 14 |  |  |  | 1.425 | 1.603 | 1.781 | 1.959 | 2.137 | 2.320 |  |  |
| 1.5 |  |  |  |  | 1.842 | 2.045 | 2.25 | 2.455 | 2.655 |  |  |
| 16 |  |  |  |  | 2.092 | 2.325 | 2.560 | 2.795 | 3.025 |  |  |
| 17 |  |  |  |  |  | 2.625 | 2.89 | 3.15 | 3.42 | 3.685 |  |
| 171/2 |  |  |  |  |  | 2.78 | 3.06 | 3.34 | 3.62 | 3.89 |  |
| 18 |  |  |  |  |  | $\stackrel{24}{ }$ | 3.24 | 3.535 | 383 | 4.13 | 4.42 |
| 181/2 |  |  |  |  |  | 3.111 | 3.425 | 3.73.) | 4.045 | 4.35 | 4.67 |

Contributed by B. J. Sinne, Machinery's Data Sheet No. 12 (Railway Edition). Explanatory note: Page 38.


transform water at that temperature into steam, this heat quantity being termed the internal latent heat.
3. The heat corresponding to the external work done by the steam in making room for itself against the pressure of the atmosphere, or against the surrounding steam, if enclosed in a vessel. The sum of the two last quantities is called the latent heat of steam.

Referring to the tables on pages 6 and 7 it will be seen that these tables give the temperature of the steam for various pressures, the weight in pounds per cubic foot of steam at given pressures, the volume in cubic feet of one pound of steam at a given pressure, and the heat units in the water and in the steam, together with the latent heat in the steam. These tables will be found convenient in calculations relating to steam and steam engines.

Assume as an example that it is required to find the various properties of saturated steam for 115.3 pounds gage pressure. Referring to the table on page 6 we find that steam at this pressure has a temperature of 347.1 degrees F., that it weighs 0.294 pound per cubic foot, and that the volume of one pound of the steam is 3.41 cubic feet. The total number of heat units in the water is 319.1 , and in the steam 1,187.8, the number of latent heat units in the steam being 868.7.

## Steam Pipe Sizes

The problem of determining the size required for steam pipes under varying conditions is one which often confronts the engineer, and the difficulty of obtaining reliable data is well known. In order to facilitate work of this character, the tables given on pages 8 to 11 , inclusive, have been computed. Tables I, II and III (pages 8 and 9) are computed from D'Arcy's formulas for flow of steam in pipes, which are given on page 10. Table IV gives the values of the constants used in these formulas for
various diameters of pipe.
Table I, on page 8, gives the flow of steam in pounds per minute through pipes 100 feet in length, for initial pressures of $1 / 4$ to 5 pounds, assuming that the pressure in each case drops to zero; that is, the drop in pressure equals the initial pressure. It is seen from the table, for example, that a 2 -inch pipe will discharge 2.9 pounds of steam per minute under a pressure of $1 / 2$ pound per square inch, or 14.9 pounds under a pressure of 5 pounds, the terminal pressure dropping to zero in each case. The table is sufficiently accurate for any initial pressure less than 10 pounds for the drops in pressure noted at the heads of the columns, regardless of whether the pressure falls to zero or not. For example, a 4 -inch pipe, 100 feet long, will discharge approximately 18.1 pounds of steam per minute with a drop in pressure of $1 / 4$ pound, or 91.9 pounds with a drop of 5 pounds, for any initial pressure up to 10 pounds.

As the initial pressure increases, the quantity of steam discharged for a given drop in pressure becomes greater than given in Table I. Table II, page 9, gives correction factors for higher initial pressures. For example: The factor for a drop of 5 pounds at an initial pressure of 80 pounds is 2.09 , so that under these conditions a 4 -inch pipe will discharge $91.9 \times 2.09=192$ pounds of steam per minute, the value 91.9 having been obtained from Table I.

The figures given in Table I are for pipe runs of 100 feet only. For different lengths, the results should be corrected by the factors given in Table III, page 9. For example: A 4-inch pipe, 100 feet in length, will discharge 91.9 pounds of steam per minute with a drop in pressure of 5 pounds at the discharge end; if the pipe is only 50 feet in length, it will discharge $91.9 \times 1.41=129.5$ pounds, or if it is 500 feet in length, it will discharge $91.9 \times 0.45=41.4$ pounds.
(Continued on page 32.)

DIMENSIONS OF PISTON RINGS


DIMENSIONS OF STUFFING BOXES AND GLANDS

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diam． of Rod Rnches | $A$ Inches | B |  | $\left[\begin{array}{l} \text { LOW } \\ \text { Press } \\ \text { Praches } \end{array}\right.$ | Inches | $E$ |  |  |  | $\begin{gathered} H \\ \text { Inches } \end{gathered}$ | K | $\stackrel{L}{L}$ | M | $\begin{gathered} N \\ \text { Unches } \end{gathered}$ | 0 | $P$ |
| $\frac{1}{2}$ | $\frac{3}{4}$ | ， | $1 \frac{1}{2}$ | $1 \frac{1}{8}$ | $\frac{7}{16}$ | $\frac{3}{16}$ |  | $\frac{3}{8}$ | $\frac{3}{4}$ | $\frac{7}{16}$ | $\frac{5}{16}$ | $1 \frac{13}{16}$ | $\frac{7}{16}$ | $1{ }^{3}$ | 15 | 3 |
| $\frac{9}{16}$ | $\frac{13}{16}$ | $1 \frac{1}{16}$ | $1 \frac{1}{2}$ | 1\％ | $\frac{7}{16}$ | $\frac{3}{16}$ |  | $3 / 8$ | $\frac{3}{4}$ | $\frac{7}{16}$ | $\frac{5}{16}$ | $1 \frac{13}{16}$ | $\frac{7}{16}$ | 17 | 15 | $3 / 8$ |
| 5 | 78 | 1\％ | $1 \frac{1}{2}$ | 1\％ | $\frac{7}{16}$ | $\frac{3}{16}$ |  | $3 / 8$ | $\frac{3}{4}$ | $\frac{7}{16}$ | $\frac{5}{16}$ | 116 | $\frac{7}{16}$ | 17 | 17 | 38 |
| $\frac{11}{16}$ | $\frac{15}{16}$ | $1{ }^{3} 16$ | $1 \frac{1}{2}$ | 1／8 | $\frac{7}{16}$ | $\frac{3}{16}$ |  | 3／8 | 3 | $\frac{7}{16}$ | $\frac{5}{16}$ | $1 \frac{15}{16}$ | $\frac{7}{16}$ | 2 | 176 | 38 |
| 3 | $1 \frac{1}{16}$ | $1 \frac{3}{8}$ | 1\％ | $1 \frac{1}{4}$ | $\frac{9}{16}$ | 年 |  | 3 | 78 | $\frac{1}{2}$ | $3 /$ | $2{ }^{\frac{5}{16}}$ | $\frac{1}{2}$ | $2 \frac{1}{4}$ | $1{ }^{3}$ | $\frac{7}{16}$ |
| 動 16 | $1 / 8$ | 17 | 18 | $1 \frac{1}{4}$ | $\frac{9}{16}$ | $\frac{1}{4}$ |  | 3 | 78 | $\frac{1}{2}$ | 3 | $2{ }^{5}$ | $\frac{1}{2}$ | 23 | 13 | $\frac{7}{16}$ |
| \％ | $1 / \frac{3}{16}$ | $1 \frac{1}{2}$ | 1\％ | 1／4 | $\frac{9}{16}$ | $\frac{1}{4}$ |  | 3 | 78 | $\frac{1}{2}$ | $3 / 8$ | 27 | $\frac{1}{2}$ | 23 | $1 \frac{7}{8}$ | $\frac{7}{16}$ |
| 15 <br> 16 | $1 \frac{1}{4}$ | 19 | 18 | 年 | $\frac{9}{16}$ | $\frac{1}{4}$ |  | 38 | 78 | $\frac{1}{2}$ | $3 / 8$ | $2 \frac{7}{16}$ | $\frac{1}{2}$ | 21 $\frac{1}{2}$ | 18 | $\frac{7}{16}$ |
| 1 | $1{ }^{16}$ | 13 | 2年 | $1 \frac{1}{2}$ | $\frac{11}{16}$ | $\frac{5}{16}$ |  | $\frac{7}{16}$ | 18 | 5 | $\frac{7}{16}$ | $2 \frac{3}{4}$ | $\frac{9}{16}$ | $2 \frac{3}{4}$ | 2 | $\frac{1}{2}$ |
| 1\％ | $1 \frac{7}{16}$ | 18 | $2 \frac{1}{4}$ | $1 \frac{1}{2}$ | $\frac{11}{16}$ | $\frac{5}{16}$ |  | $\frac{7}{18}$ | $1 \frac{1}{8}$ | 5 | $\frac{7}{16}$ ． | 27 | $\frac{9}{16}$ | $2 \frac{7}{8}$ | 2\％ | $\frac{1}{2}$ |
| 暏 | 15 | 2 | $2 \frac{1}{4}$ | $1 \frac{1}{2}$ | － 11 | $\frac{5}{16}$ |  | $\frac{7}{16}$ | 18 | 5 | $\frac{7}{16}$ | 3 | $\frac{9}{16}$ | 3 | $2 \frac{1}{4}$ | $\frac{1}{2}$ |
| 138 | 13 | $2 \frac{1}{4}$ | 25 | 13 | $\frac{3}{4}$ | $\frac{5}{16}$ | 5 | $\frac{9}{16}$ | $1 / 4$ | 3 | $\frac{1}{2}$ | $3 \frac{1}{2}$ | $\frac{3}{4}$ | $3^{\frac{3}{8}}$ | 28 | 5 |
| $1 \frac{1}{2}$ | 17 | $2 \frac{3}{8}$ | $2{ }^{5}$ | 13 | $\frac{3}{4}$ | $\stackrel{5}{16}$ | 5 8 | $\frac{9}{16}$ | 先 | 3 | $\frac{1}{2}$ | 35 | $\frac{3}{4}$ | $3 \frac{1}{2}$ | $2 \frac{3}{4}$ | 5 |
| \％ 5 | 2 | $2 \frac{1}{2}$ | 25 | 堍 | $\frac{3}{4}$ | $\frac{5}{16}$ | 5 | $\frac{9}{16}$ | 14 | $\frac{3}{4}$ | $\frac{1}{2}$ | $3 \frac{3}{4}$ | $\frac{3}{4}$ | 35 | $2 \frac{8}{8}$ | 58 |
| 繤 | $2 \frac{1}{8}$ | $2 \frac{3}{4}$ | 3 | 2 | 7 | $3 / 8$ | 3 | $\frac{9}{16}$ | $1 \frac{1}{2}$ | 7 | 5 | $4 \frac{1}{4}$ | 7 | $4 \frac{1}{8}$ | 3\％ | $\frac{3}{4}$ |
| 1\％ | 2年 | 2\％ | 3 | 2 | 7 | 38 | 3 | $\frac{9}{16}$ | $1 \frac{1}{2}$ | 7 | 5 | $4 \frac{3}{8}$ | 7 | $4 \frac{1}{4}$ | $3 \frac{1}{4}$ | $\frac{3}{4}$ |
| 2 | 28 | 3 | 3 | 2 | 78 | $3 / 8$ | $\frac{3}{4}$ | $\frac{9}{16}$ | $1 \frac{1}{2}$ | 8 | 58 | $4 \frac{1}{2}$ | 78 | $4 \frac{3}{8}$ | $3 \frac{3}{8}$ | $\frac{3}{4}$ |
| 21／8 | $2 \frac{1}{2}$ | $3 \frac{1}{8}$ | 3 | 2 | 78 | $3 / 8$ | $\frac{3}{4}$ | $\frac{9}{16}$ | $1 \frac{1}{2}$ | 78 | 5／8 | $4 \frac{5}{8}$ | 7 | $4 \frac{1}{2}$ | 31 | $\frac{3}{4}$ |
| 2年 | $2 \frac{5}{8}$ | $3 \frac{3}{8}$ | 33 | $2 \frac{1}{4}$ | 1 | $\frac{7}{16}$ | 78 | 5 | 15 | 1 | $\frac{3}{4}$ | $5 \frac{1}{8}$ | 1 | 5 | $3 \frac{3}{4}$ | 78 |
| $2 \frac{3}{8}$ | $2^{\frac{3}{4}}$ | $3 \frac{1}{2}$ | 338 | $2 \frac{1}{4}$ | 1 | $\frac{7}{16}$ | 7 | 5 | 15 | 1 | $3 / 4$ | $5 \frac{1}{4}$ | 1 | $5 \frac{1}{8}$ | 378 | 78 |
| $2 \frac{1}{2}$ | 27 | 35 | $3 \frac{3}{8}$ | 2年 | 1 | $\frac{7}{16}$ | 7 | $5 / 8$ | 尔 | 1 | $\frac{3}{4}$ | $5 \frac{3}{8}$ | 1 | $5 \frac{1}{4}$ | 4 | $\frac{7}{8}$ |

United States Navy Standard，Machinery＇s Data Sheet No．115．Explanatory note：Page．． 38.

## PITCH OF BOLTS IN WATER AND STEAM JOINTS

Thickness of Flange for Through Bolts $=1 \frac{1}{4}$ to $1 \frac{1}{2}$ Bolt Diameters Thickness of Flange for Through Studs $=1 \frac{1}{2}$ to 2 Stud Diameters Width of Flange $=2 \frac{3}{4}$ to $3 \frac{1}{2}$ Bolt or Stud Diameters

SETTING CORLISS ENGINE VALVE GEARS-I



Contributed by F. Douglas Wilkes, Machinery's Data Sheet No. 122. Explanatory note : Page 38.


## SETTING CORLISS ENGINE VALVE GEARS-IV

## Explanatory Notes.

Fig. I. Working edges of valves and ports are shown by chisel marks on ends of valves and chambers
Fig. 2. To Find Length of Rods :- Turn engine over by hand until eccentric s.tands vertical, as shown at $A$; then adjust eccentric rod $B$ until rocker stands vertical, as shown at $C$; then adjust reach rod D until wrist plate stands vertical, as shown at E. See.marks on hub as in Fig. 2A.

Fig. 3: To Set Valves:- Adjust rods F until steam valves have the required lap, as.shown at H. Adjust rods G until extiaust valves have the required lap, as:shown at Ha.
Fig. 4. To Set Eccentric:- Put crank on dead center and move eccentric ahead of crank until steam valves show required lead, as atk. To Equalize Lead:- Fasten eccentric; then put crank on other center and note it the leads are equal. If not the same on both ends adjust rods F until both leads are equal. Caution About Length of vac. Pot Rods:- In every case, when altering length of rods $F$, rod $L$ to vacuum pot must be altered to suit. If rod $L$ is too short, hook plate $M$ will not pick up plate $N$ and valve will not open. If rod L is too long, O will come down on top of $N$ and either break the valve gear or vacuum pot, or bend rods F or L.

Fig. 5. To Set Cut-aff Cams:- Throw wrist plate over to extreme travel (by marks on hub Fig. 2A), as shown at P. Place governor on top latch. as shown at $R$. Then adjust rod 5 until cut-off cam Tnearly touches, but does not trip tail of hook U. Then throw wrist plate to other extreme of travel and adjust rod V until cam on head end just clears tailot hook. as shown at $T$ and $U$.
Fig. 6. To Set Safety Cams:-Let governor down as far as it will go, as shown at $R_{a}$. Then move wrist plate over to extreme throw, as shown at Pa. Loosen screw $X$. and slide satety cam $Y$ on ring $Z$ ip under tail of hook $U$ until hook trips at $M$. Slide cam along about $1 / 8$ inch further and screw cam fast in this position. Set safety cam on other steam valve in the same manner. This insures that steam valves cannot open, as the hook cannot pick up the valve arm when gokernor is down at botfom. Hence governor must be raised up on stop before engine can be started.

## CONDENSER AND AIR PUMP DATA-I

To Find Amount of water Required to Condense One Pound Steam.
Let $\mathrm{H}=$ total heat in one pound steam at given pressure $=($ about 1190 )
$h=$ total heat in one pound water at temperature of the condensed steam
$z=$ temperature of condensing water entering condenser
T-temperature of condensing water leaving condenser
Q-pounds water required to condense one pound steam
$r=$ temperature of air pump discharge (=approx. h)

$$
Q=\frac{H-h}{T-z} \quad \text { or } \quad Q=\frac{1190-r}{T-z} \text { (see Table III) }
$$

For jet condenser $T=r$ hence $Q-\frac{1190-T}{T-Z}$ (see Table IV)
To. Find Condensing water per H.P. in (U.5.) Gallons.
One:pound water at condenser temperature equals aboüt 28 cubic inches

$$
\frac{28}{231}-\frac{1}{8.25} \text { gallons, hence } \frac{Q(1 b 5)}{8.25}=\text { U.5.gallons }
$$

If 5 -pounds of steam required per H.P. per hour by engine
W-pounds steam condensed per hour
$Q=$ pounds condensing water per pound steam
Then condensing water in U.5.gallons per hour $=\frac{H . P . P Q \times 5}{8.25}$ or
condensing water in U.S.gallons per minute $=\frac{\text { H.P. } \times Q \times 5}{495}$ If $\begin{aligned} 5=20 \\ Q=25\end{aligned} \quad \frac{20 \times 25}{495}=\frac{500}{495}$ - about one gallon perminute per H.'P. which is a good practical allowance

Size of Injection Pipe.
Velocity of flow in injection pipe should not exceed 300 ft .per minute or 5 ft . per second A close approximation is
Diameter of pipe $-\sqrt{\frac{\text { pounds condensing water per hour }}{6000}}=\sqrt{\frac{H \cdot P \times 5 \times Q}{6000}}$

## CONDENSER AND AIR PUMP DATA—II

To Find Size of Air Pump Required for Jet Condenser:
For vertical single acting pumps $D=0.75 W(Q+1)$
For horizontal double acting pumps $D=w(Q+1)$
Where:- $D=$ pump displacement in cubic inches per minute
$W=$ pounds steam condensed per hour
$Q=$ pounds of injection water per pound steam
Ratio of pump. displacement to volume of water is. 1 to 1.613 for vertical single acting pumps and 1 to ${ }^{\circ 2.143 \text { for horizontal double acting. }}$

To Find Size of Air Pump Required for a Surface Condenser. For vertical single acting pumps $D=5 \mathrm{~W}$ For horizontal double acting pumps $D=9 \mathrm{w}$

To Find Condensing Surface Required.
Allow one square foot cooling surface to each 10 pounds steam to be condensed per hour, cooling water at normal temperature not to exceed 75 degrees. In the tropics add at least 10 percent to the above. If there is an abundance of condensing water, as a keel condenser, or water works engine where all water pumped is run through condenser, surface may be much less. Allow from 20 to 35 pounds steam to each square foot surface.

Whitham's formula $S=\frac{W L}{180(T-Z)}$
Where :- $5=$ cooling surface in square feet
W=pounds steam*condensed per hour
$L$-latent heat steam at condenser temperature
$T=$ temperature of condenser, or air pump discharge
$z$-average temperature circulating water $=\frac{\text { initial }+ \text { final temperature }}{2}$ For ordinary conditions this reduces to

$$
5=\frac{17 W}{180} \text { or } \quad S=0.0944 W
$$

Or:one square foot cooling surface to about 10.6 pounds steam condensed per ordinary condenser with small horizontal brass tubes.

## CONDENSER AND AIR PUMP DATA—III

| Pounds |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T-Z | Temperature Air Pump Discharge. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 90 | 95 | 100 | 102 | 104 | 106 | 108 | 110 | 112 | 114 | 116 | 118 | 120 | 125 | 130 |
| 5 | 220 | 219 | 218 | 217.6 | $2 / 7.2$ | 216.8 | 2/6.4 | 216 | 215.0 | 215.2 | 214.8 | 214.4 | 214 | 2/3 | 212 |
| 10 | 110' | 109.5 | 109 | 108.8 | 108.0 | 108.4 | 108.2 | 108 | 107.8 | 107.6 | 107.4 | 107.2 | 107 | 106.5 | 106 |
| 15 | 73.3 | 73 | 72.7 | 72.5 | 72.4 | 72.3 | 72.1 | 72 | 71.9 | : 71.7 | 71.6 | 71.5 | 71.3 | 71 | 70.7 |
| 20 | 55 | 54.7 | 54.5 | 54.4 | 54.3 | 54.2 | 54.1 | 54 | 53.9 | 53.8 | 53.7 | 53.6 | 53.5 | 53.2 | 53 |
| 25 | 44 | 43.8 | 43.6 | 43.5 | 43.4 | 43.4 | 43.3 | 43.2 | 43.1 | 43 | 42.9 | 42.9 | 42.8 | 42.6 | 42.4 |
| 30 | 36.7 | 36.5 | 36.3 | 30.3 | 36.2 | 36.2 | 36.1 | 36 | 35.9 | 35.9 | 35.8 | 35.7 | 35.7 | 35.5 | 35.3 |
| 35 | 31.4 | 31.3 | 31.1 | 31.1 | 31 | 31 | 30.9 | 30:8 | 30.8 | 30.7 | 30.7 | 30.6 | 30.5 | 30.4 | 30.3 |
| 40 | 27.5 | 27.4 | 27.2 | 27.2 | 27.1 | 27.1 | 27 | 27 | 26.9 | 26.9 | 26.8 | 26.8 | 26.7 | 26.6 | 26.5 |
| 45 | 24.4 | 24.3 | 24.2 | 24.2 | 24.1 | 24.1 | 24 | 24 | 23.9 | 23.9 | 23.9 | 23.8 | 23.8 | 23.7 | 23.5 |
| 50 | 22 | 21.9 | 21.8 | 21.8 | 21.7 | 21.7 | 21.6 | 21.6 | 21.6 | 21.5 | 21.5 | 21.4 | 21.4 | 21.3 | 27, 2 |
| 55 | 20 | 19.9 | 19.8 | 19.8 | 19.7 | 19.7 | 19.7 | 19.6 | 19.6 | 19.6 | 19.5 | 19.5 | 19.4 | 19.4 | 19.3 |
| 6.0 | 18.3 | 18.2 | 18.2 | 18.1 | 18.1 | 18.1 | 18 | 18 | 18 | 17.9 | 17.9 | 17.9 | 17.8 | 17.7 | 17.7 |
| 65 | 16.9 | 16.8 | 76.8 | 16.7 | 16.7 | 16.7 | 16.6 | 16.6 | 16.6 | 16.5 | 16.5 | 16.5 | 16.5 | 16.4 | 16.3 |
| 70 | 15.7 | 15.6 | 15.6 | 15.5 | 15.5 | 15.5 | 15.4 | 15.4 | 15.4 | 15.4 | 15.3 | 15.3 | 15.3 | 15.2 | 15.1 |
| 75 | 14.7 | 14.6 | 14.5 | 14.5 | 14.5 | 14.4 | 14.4 | 14.4 | 14.4 | 14.3 | 14.3 | 14.3 | 14.3 | 14.2 | 14.1 |
| 80 | 13.7 | 13.6 | 13.6 | 13.6 | 13.6 | 13.5 | 13.5 | 13.5 | 13.5 | 13.4 | 13.4 | 13.4 | 13.4 | 13.3 | 13.2 |
| 85 | 12.9 | 12.8 | 12.8 | 12.8 | 12.8 | 12.'7 | 12.7 | 12.7 | 12.7 | 12.6 | 12.6 | 12.6 | 12.6 | 12.5 | 12.5 |
| 90 | 12.2 | 12.2 | 12.1 | . 12.1 | 12.1 | 12 | 12 | 12 | 12 | 11.9 | 11.9 | 11.9 | 11.9 | 11.8 | . 11.8 |

CONDENSER AND AIR PUMP DATA-IV

| No: Pounds Injection Water Required per I Pound Stearn Condensed Q- $\frac{1190-T}{T-t}$. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Entering Temperature of Injection water $=z$. |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| 90 | 20 | 22 | 24.4 | 27.5 | 31.4 | 36.7 | 44 | 55 | 73.3 | 110 | 220 |  |  |  |
| 92 | 19.2 | 21.1 | 23.4 | 26.1 | 29.7 | 34.3 | 40.7 | 49.9 | 64.6 | 91.5 | 156.8 | 549 |  |  |
| 9 | 18. | 20.3 | 22.4 | 24.9 | 28.1 | 32.2 | -37.8 | 45.7 | 57.7 | 78.1 | 121.8 | 274 |  |  |
| 9 | 17.9 | 19. | 21.4 | 23.6 | 26.7 | 30.4 | 35.3 | 42.1 | 52.1 | 68.4 | 99.4 | 182.3 |  |  |
| 98 | 17.3 | 18.8 | 20.6 | 22.7 | 25.4 | 28.7 | 33.0 | 39 | 47.5 | 60.7 | 84 | 136.5 | 364 |  |
| 100 | 16.8 | 18.2 | 19.8 | 21.8 | 24.2 | 27.2 | 31.1 | 36.3 | 43.6 | 54.5 | 72.7 | 109 | 218 |  |
| 102 | 16.2 | 17.5 | 19.1 | 20.9 | 23.1 | 25.9 | 29.4 | 34 | 40.3 | 49.5 | 64 | 90.7 | 155.4 | 544 |
| 104 | 15. | 17 | 18.4 | 20.1 | 22.2 | 24. | 27.8 | 31.9 | 37.4 | 45.2 | 57.2 | 77.6 | 120.7 | 27 |
| 106 | 15.3 | 16.4 | 17.8 | 19 | 21.3 | 23.6 | 26.4 | 30.1 | 35 | 41.7 | 51.6 | 67.7 | 98.5 | 180.7 |
| 108 | 14. | 15.9 | 17.2 | 18. | 20. | 22.5 | 25.2 | 28.5 | 32.8 | 38.6 | 47 | 60.1 | 83.2 | 135.2 |
| 110 | 14.4 | 15.4 | 16.6 | 18 | 19. | 21.6 | 24 | 27 | 30.9 | 36 | 43.2 | 54 | 72 | 108 |
| 112 | 14 | 15 | 16.1 | 17.4 | 18.9 | 20.7 | 22.9 | 25.7 | 29.1 | 33.6 | 39.9 | 49 | 63.4 | 89.8 |
| 114 | 13.6 | 14.5 | 15.6 | 16.8 | 18.2 | 19.9 | 22 | 24.5 | 27.6 | 31.6 | 37.1 | 44.8 | 56.6 | 76.9 |
| 116 | 13.3 | 14.1 | 15.1 | 16.3 | 17.6 | 19.2 | 21.1 | 23.3 | 26.2 | 29.8 | 34.6 | 41.3 | 51.1 | 67.1 |
| 118 | 12.9 | 13.7 | 14.7 | 15.8 | 17 | 18. | 20.2 | 22.3 | 24.9 | 28.2 | 32.5 | 38.3 | 46.6 | 59.6 |
| 120 | 12.6 | 13.4 | 14.3 | 15.3 | 16.5 | 17.8 | 19.5 | 21.4 | 23.8 | 26.7 | 30.6 | 35.7 | 42.8 | 53.5 |
| 122 | 12.3 | 13 | 13.9 | 14.8 | 15.9 | 17.2 | 18.7 | 20.5 | 22.7 | 25.4 | 28.9 | 33.4 | 39.6 | 48.5 |
| 124 | 12 | 12.7 | 13.5 | 14.4 | 15.4 | 16.7 | 18.1 | 19.7 | 21.8 | 24.2 | 27.3 | 31.4 | 36.8 | 44.4 |
| 126 | 11.7 | 12.4 | 13.1 | 14 | 15 | 16.1 | 17.4 | 19 | 20.9 | 23.1 | 26 | 29.6 | 34.3 | 40.9 |
| /28 | 11.4 | 12.1 | 12.8 | 13.6 | 14.5 | 15.6 | 16.9 | 18.3 | 20 | 22.1 | 24.7 | 27.9 | 32.2 | 37.9 |
| 130 | 11.2 | 11.8 | 12.5 | 13.2 | 14.1 | 15.1 | 16.3 | 17.7 | 19.3 | 21.2 | 23.6 | 26.5 | 30.3 | 35.3 |
| 132 | 10.9 | 11.5 | 12.2 | 12.9 | 13.7 | 14.7 | 15.7 | 17.1 | 18.6 | 20.3 | 22.5 | 25.2 | 28.6 | 33.1 |
| 134 | 10.7 | 11.2 | 11.9 | 12.6 | 13.4 | 14.3 | 15.3 | 16.5 | 17.9 | 19.6 | 21.6 | 24 | 27.1 | 31 |
| 136 | 10.4 | // | 11.6 | 12.3 | 13 | 13.9 | 14.8 | 16 | 17.3 | 18.8 | 20.7 | 22.9 | 25.7 | 29.2 |
| 138 | 10.2 | 10.7 | 11.3 | 12 | 12.7 | 13.5 | 14.4 | 15.5 | 16.7 | 18.1 | 19.8 | 21.9 | 24.5 | 27.7 |
| 140 | 10 | 10.5 | 11.1 | 11.7 | 12.4 | 13.1 | 14 | 15 | 16.2 | 17.5 | 19.1 | 21 | 23.3 | 26.2 |

Contributed by F. Douglas Wilkes, Machinery's Data Shcet No. 121. Explanatory note: Page 38.

Example 1.-What weight of steam will be discharged per minute through a $31 / 2$-inch pipe, 100 feet long, with an initial pressure of 40 pounds, and a drop of 3 pounds?
$47.8 \times 1.70=81.3$ pounds.
Example 2.-What size of pipe will be required to deliver 51.3 pounds of steam a distance of 100 feet, with an initial pressure of 60 pounds, and a drop of 2 pounds?

The factor for 60 pounds initial pressure and 2 pounds drop is 2.02 , and 51.3
$\overline{2.2}=25.4$, which in Table I corre2.02
sponds to a 3 -inch pipe.
Example 3.-What weight of steam will be discharged per minute through a 5 -inch pipe, 600 feet long, with an initial pressure of 5 pounds, and a drop of $1 / 2$ pound?
$45.7 \times 0.40=18.3$ pounds.
The tables given may be applied to either power or heating work, or to any conditions where the quantity of steam used can be reduced to pounds per minute.

## Engine Connections

Steam pipes for engine connections are commonly based on a velocity of 6,000 and 8,000 feet per minute for the steam and exhaust pipes respectively, assuming the entire cylinder to be filled with steam at each stroke. This gives approximately 0.14 square inches internal area per H. P. for the steam pipe and 0.20 square inches for the exhaust. For example, a 100 H. P. engine would require
$100 \times 0.14=14$ square inches, or a 4 -inch steam pipe; and
$100 \times 0.20=20$ square inches, or a 5 -inch exhaust pipe.

Tables V, VI and VII, page 11, give the diameters of pipe required for heating purposes.

## Weight of Steam Discharged by Safety Valves

On page 12 a table is given of the welght of steam discharged per hour
by safety valves. The amount of steam discharged by safety valves is a rather uncertain quantity, but this table may be considered as giving fair average values. The weights are calculated for a valve lift of 0.1 inch. If the lift of the valve is changed, the values given in the table should be multiplied by the factors given beneath the table for different valve lifts.

## Diameters of Steam Pipes and Areas of Steam Ports

On page 13 is given a diagram by means of which the diameters of steam pipes and the areas of steam ports for engines with different piston speeds and velocities of steam may be determined. The notes in the lower right-hand corner of the diagram explain the significance of the various curves. The scales at the top and bottom of the diagram indicate the port area in square inches or the steam pipe diameter in inches, respectively.

For example, assume that it is required to find the port area for a steam engine, when the piston speed is 500 feet per minute, the piston area 20 square inches and the velocity of steam 6,000 feet per minute. Curve III gives the port area when the piston area equals 1 , and the velocity of the steam is 6,000 feet per minute. In this case locate 500 on the left-hand vertical scale, giving the piston speed in feet per minute. Follow the horizontal line from 500 until it intersects the diagonal marked III. From the point of intersection, follow vertically up or down to the scale at top or bottom, where in this case the approximate graduation would be 0.085 , which is the port area expressed in square inches for a piston area equal to one square inch. In the present case, where the piston area equals 20 square inches, the port area must be $20 \times 0.085=1.7$ square inch. The steam pipe diameter for the same conditions is found from curve VII, by (Continued on page 38.)

DIRECT-CONNECTED ENGINE AND GENERATOR BASES

| As Arranged for Horizontally Parfed Generators. <br> Stools to be made and located to suit feet of horizontally parted generators. Builders of lafter note that radius of outside offield piece must be $\frac{1 " 1}{4}$ to $\frac{1}{2}$ "less than R. <br> As Arranged for Vertically Parted Generators. <br> Rectangular seatings to be made and located to suit bases of vertically parted generators. <br> All dimensions in inches |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 50 \\ & 50 \\ & 3 \end{aligned}$ | $\begin{aligned} & \Sigma^{\circ} \\ & 0^{\circ} \\ & 0 \end{aligned}$ |  | ature ore | Diam. of shaf armatu | fengine ft at fit | space occup onsh betw lim lines $y$ 0 0 0 0 $\vdots$ 0 |  |  |  | $R$ | $\begin{array}{ll} 0 & \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 1 & y \\ 1 \\ 0 \end{array}$ |  |  |  | 0 0 0 8 8 |  |  |
| 25 | 310 | 4 | $4 \frac{1}{2}$ | $4+\frac{1}{1000}$ | $4 \frac{1}{2}+\frac{1}{1000}$ | 30 | 25 | 5 | 232 | flat | 48 | 1 | $\frac{3}{4}$ | 3/8 | 38 | 1 | 4 |
| 35 | 300 | 4 | $5 \frac{1}{2}$ | $4+\frac{1}{1000}$ | $5 \frac{1}{2}+\frac{1}{1000}$ | 33 | 28 | 5 | 25 | flat | 54 | 1 | $3 / 4$ | $3 / 8$ | $3 / 8$ | 1 | 4 |
| 50 | 290 | $4 \frac{1}{2}$ | $6 \frac{1}{2}$ | $4 \frac{1}{2}+\frac{1}{1000}$ | $6 \frac{1}{2}+\frac{2}{1000}$ | 37 | 31 | 6 | 28 | flat | 60 | $1 / 4$ | $3 / 4$ | $3 / 8$ | $3 / 8$ | 1 | 4 |
| 75 | 275 | $5 \frac{1}{2}$ | $7 \frac{1}{2}$ | $5 \frac{1}{2}+\frac{1}{1000}$ | $7 \frac{1}{2}+\frac{2}{1000}$ | 43 | 37 | 6 | 31 | flat | 66 | $1 \frac{1}{2}$ | 1 | $\frac{1}{2}$ | $\frac{1}{2}$ | 1/4 | 4 |
| 100 | 260 | 6 | $8 \frac{1}{2}$ | $6+\frac{1}{1000}$ | $8 \frac{1}{2}+\frac{2}{1000}$ | 48 | 42 | 6 | 34 | flat | 72 | $1 \frac{1}{2}$ | 1 | $\frac{1}{2}$ | $\frac{1}{2}$ | 1/4 | 4 |
| 150 | 225 | 7 | 10 | $7+\frac{2}{1000}$ | $10+\frac{2}{1000}$ | 51 | 45 | 6 | $37 \frac{3}{4}$ | $41 \frac{1}{4}$ | 84 | 13 | 1/4 | 5/8 | 5/8 | $1 / 4$ | 4 |
| 200 | 200 | 8 | $1 /$ | $8+\frac{2}{1000}$ | $11+\frac{2}{1000}$ | 54 | 48 | 6 | $42 \frac{3}{4}$ | $47 \frac{1}{2}$ | 96 | 2 | $1 / 4$ | 5/8 | 5/8 | $1 \frac{1}{2}$ | 4 |

Contributed by L. C. Darier, Machinery's Data Sheet No. 125. Explanatory note: Page 38.

HORSEPOWER OF GASOLINE ENGINES-I

Table I. Horse-Power of Gasoline Engines.

| Bore | Stroke |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bore +0 | Bore $+\frac{1 / 4}{4 \prime}$ | Bore + ${ }^{11}{ }^{\prime \prime}$ | Bore $+\frac{3}{4}{ }^{\prime \prime}$ | Bore +1" | Bore $+11^{1 / 1}$ | Bore $+1^{\frac{1}{2}}$ | Bore $+13^{3 \prime}$ | Bore $+2^{\prime \prime}$ |
| 2 | 0.72 | 0.80 | 0.89 | 0.98 | 1.08 | 1.17 | 1.25 | 1.35 | 1.44 |
| $2 \frac{1}{4}$ | 1.01 | 1.12 | 1.22 | 1.34 | 1.45 | 1.57 | 1.68 | 1.81 | 1.90 |
| $2 \frac{1}{2}$ | 1.39 | 1.53 | 1.67 | 1.81 | 1.95 | 2.09 | 2.23 | 2.37 | 2.51 |
| $2 \frac{3}{4}$ | 1.85 | 2.02 | 2.19 | 2.36 | 2.53 | 2.70 | 2.87 | 3.04 | 3.20 |
| 3 | 2.40 | 2.60 | 2.80 | 3.00 | 3.21 | 3.40 | 3.61 | 3.81 | 4.00 |
| $3 \frac{1}{4}$ | 3.06 | 3.28 | 3.52 | 3.76 | 3.99 | 4.22 | 4.45 | 4.70 | 4.92 |
| 3 $\frac{1}{2}$ | 3.81 | 4.09 | 4.36 | 4.63 | 4.90 | 5.18 | 5.45 | 5.72 | 6.00 |
| $3 \frac{3}{4}$ | 4.71 | 5.02 | 5.34 | 5.65 | 5.97 | 6.28 | 6.60 | 6.91 | 7.23 |
| 4 | 5.71 | 6.06 | 6.42 | 0.78 | 7.13 | 7.50 | 7.85 | 8.20 | 8.55 |
| $4 \frac{1}{4}$ | 6.84 | 7.24 | 7.64 | 8.05 | 8.45 | 8.85 | 9.25 | 9.66 | 10.06 |
| $4 \frac{1}{2}$ | 8.25 | 8.68 | 9.16 | 9.62 | 10.08 | 10.54 | 10.96 | 11.41 | 11.89 |
| $4 \frac{3}{4}$ | 9.57 | 10.07 | 10.57 | 11.09 | 11.58 | 12.08 | 12.59 | 13.09 |  |
| 5 | 11.16 | 11.72 | 12.28 | 12.84 | 13.40 | 13.95 | 14.50 |  |  |
| 5年 | 12.92 | 13.54 | 14.15 | 14.76 | 15.40 | 16.00 | Table is | figured by | yas- |
| $5 \frac{1}{2}$ | 14.84 | 15.51 | 16.20 | 16.86 | 17.54 | minute | $\begin{aligned} & \text { suming } \\ & \text { - } 1000 \text {, an } \end{aligned}$ |  | ns per effect- |
| $5 \frac{3}{4}$ | 16.96 | 17.70 | 18.42 | 19.19 | inch, cor | ive press rrespondin | $\begin{aligned} & \text { sure }=90 \\ & \text { ding to } 68 \end{aligned}$ | pounds p | per sq. <br> ds com- |
| 6 | 19.25 | 20.05 | 20.85 | 21.65 | pression. For | n. Multiply 60 pounds | iply figure compre | es in table ssion by | $0.933$ |
| 64 | 21.78 | 22.61 | 23.50 | 24.33 |  |  |  |  | $\begin{aligned} & 1.011 \\ & 1.066 \end{aligned}$ |
| $6 \frac{1}{2}$ | 24.43 | 25.43 | 26.43 |  | 10 |  |  |  | $\begin{aligned} & 1.100 \\ & 1.111 \\ & \hline \end{aligned}$ |

Table II. Horse-Power of Gasoline Engines, figured from A.L.A. M.'s formula $\frac{D 2}{2.5}=$ H. P., where $D$ is the diameter of the bore.

| Bore, inches | 2 | $2 \frac{1}{4}$ | $2 \frac{1}{2}$ | $2 \frac{3}{4}$ | 3 | $3 \frac{1}{4}$ | $3 \frac{1}{2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Horse Power | 1.6 | 2.025 | 2.5 | 3.025 | 3.6 | 4.225 | 4.9 |
| Bore, inches | $3 \frac{3}{4}$ | 4 | $4 \frac{1}{4}$ | $4 \frac{1}{2}$ | $4 \frac{3}{4}$ | 5 | $5 \frac{1}{4}$ |
| Horse Power | 5.625 | 6.4 | 7.225 | 9.1 | 9.025 | 10.0 | 11.025 |
| Bore, inches | $5 \frac{1}{2}$ | $5 \frac{3}{4}$ | 6 | $6 \frac{1}{4}$ | $6 \frac{1}{2}$ |  |  |
| Horse Power | 12.10 | 13.225 | 14.40 | 15.625 | 10.90 |  |  |

Contributed by Morris A. Hall, Machinery's Data Sheet No. 110. Explanatory note: Page 39.

| Horse Power of Automobile Engines. Based on the A.L.A.M. Standard Horse Power Formula. assuming a piston speed of 1000 feet per minute.$H_{.} P=\frac{(\text { Diam. of cyl) })^{2} \times \text { No. of Cylinders }}{2.5}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Diameter of Cylinder |  | Horse Power |  |  |  |
| Inches | Millimeters | 1 cylinder | 2Cylinders | 4 Cylinders | 6 cylinders |
| 2/2 | 64 | 2/2 | 5 | 10 | 15 |
| 2\%/8 | 68 | 2\%/4 | 5/2 | $1 /$ | 16\%/ |
| $2 \frac{3}{4}$ | 70 | 3 | 6 | 12\% | $18 \%$ |
| 2\% | 7 | 3\%/\% | 65 | 13/4 | 19\% |
| 3 | 76 | 33 | 7/5 | $14 \%$ | $21 / \frac{3}{5}$ |
| 3/8 | 79 | 3\%\% | 7 年 | 15\% | $23 \%$ \% |
| 3/4 | 83 | 4/4 | 81/2 | 16\% | 252/5 |
| 33/8 | 85 | 4\% | 9/8 | 181/2 | $27 \%$ / |
| 3/2 | 89 | 4\% | 9\%/5 | 19\%/5 | 29\%/5 |
| 3\% | 92 | 5/\% | 10\% | 201/4 | 31/5 |
| 33/4 | 95 | 5\%/8 | $11 / 4$ | 22/2 | 33等 |
| 3\% | 99 | 6 | 12 | 24 | 36\%\% |
| 4 | 102 | $6 \% / 5$ | 12\% | 25\% | 38\%/5 |
| 4/8 | 105 | 6\%/16 | $13 \%$ | 27/1 | 40\% |
| 4/4 | 108 | $71 /$ | 14/2 | 28\% | 43\% |
| 4\% | $1 / 1$ | 7\%/8 | $15 \%$ | 30\% | 45\% |
| 4/2 | $1 / 4$ | 8\% | 16/5 | 32\% | 48\% |
| 4\% | 118 | $8 \%$ | 17/8 | 34/4 | 513\% |
| 43) | 121 | 9 | 18 | 36\% | 54\% |
| $4 \%$ | 124 | 9/2 | 19 | 38 | 57 |
| 5 | 127 | 10 | 20 | 40 | 60 |
| 5/8 | 130 | $10 \%$ | 21 | 42 | 63 |
| 5/4 | 133 | // | 22 | 44\% | 66\% |
| 5\% | 137 | $11 \%$ | 23 | 46 | 69\%\% |
| 5/2 | 140 | 12\% | 241/5 | 48\%/5 | 723/5 |
| 55/8 | 143 | 125/8 | 255/6 | 50\%/8 | 75\%/6 |
| 5\%/4 | 146 | 13\%/4 | 26\%/2 | 53 | 791/ |
| 5\%/8 | 149 | 13\% | 27\% | 55// | 82\% |
| 6 | 152 | $14 \%$ | 28\% | 57\% | 86\%/5 |

A. L. A. M. Standard, Machinery's Data Sheet No. 116. Explanatory note: Page 39.

## PROPORTIONS OF AUTOMOBILE CRANK-SHAFTS-I

## Four Cylinder 3 Journal Crank Shafts


Section $A-B$


section C-D
Cylinder Bore
$s_{1}=$ Piston Stroke
$s=$ Tensile Strength of Steel used
$p=$ Total Pressure on Piston in Pounds
$L_{1}=$ Total or Aggregate Crank Journal Length

$$
\begin{array}{lllll}
D=\sqrt[4]{\frac{P 2}{37.5 \times 5}} & & \angle=\frac{P}{1200 \times D} & F=1.05 \times B \\
& W=1.32 \times D_{1} & & F=6.6 \times D_{1} & T=\frac{0.96 D_{1}^{3}}{W^{2}}
\end{array} \quad F_{1}=1.75 \times B
$$

Four cylinder 5 Journal Crank Shafts

section A-B

$$
\begin{aligned}
& B=\text { Cyllinder Bore } \\
& 5_{1}=\text { Piston Stroke } \\
& s=\text { Tensile Strength of Steel used } \\
& p=\text { Total Pressure on Piston in Pounds } \\
& \angle=\text { Total or Aggregate Crank vournal Length } \\
& D=\sqrt[4]{\frac{p^{2}}{43.4 y s}} \\
& D_{1}=2.6 \sqrt[3]{\frac{51 \times P}{5}} \\
& w=1.32 \times 0, \\
& L=\frac{P}{1530 \times D} \\
& \angle 1=9.25 \times D_{1} \\
& T=\frac{0.960 D_{1}^{3}}{W^{2}}
\end{aligned}
$$

PROPORTIONS OF AUTOMOBILE CRANK-SHAFTS-II

\left.|  |  |  | Values of p for Different Compressions |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gage |  |  |  |  |  |  |  |  |  |$\right]$

Contributed by Herbert C. Snow, Machinery's Data Sheet No. 79. Explanatory note: Page 40.
following the horizontal line from 500 feet piston speed until intersecting curve VII, and from the point of intersection following the vertical line upward, the approximate reading on the upper scale being 0.29 inch. The piston diameter is 5.05 inches for a piston area of 20 square inches. Hence the steam pipe diameter required is $0.29 \times 5.05=1.46$ inch.

## Steam Engine Design

On pages 14 to 17, inclusive, are given a number of simple rules and formulas for steam engine design, the details covered being the cylinder, the cylinder heads, cylinder head bolts, piston, piston rod, connecting-rod, crank-pin, valve stem, cross-head, wrist-pin and flywheel. For general guidance in steam engine design these rules and formulas will be found of considerable value to the steam engine designer.

## Volume of Cylinders

On pages 18 and 19 are given two tables by means of which the volume of cylinders in cubic feet may be determined when the diameter and the stroke, both in inches, are given. For example, assume that the diameter of an engine cylinder is 16 inches and the stroke 22 inches. Then we find from the lower table on page 18 that the volume is 2.56 cubic feet. Of course, the table is as conveniently used in the reverse direction. If a cylinder volume of 4 cubic feet is required we find from the tables that a cylinder $181 / 2$. inches in diameter with a 26 -inch stroke very closely fills the requirements. We also find that the cylinder 20 inches in diameter with a 22 -inch stroke accurately answers the purpose. A number of other approximate combinations can also be determined from the tables.

Dimensions of Piston Rings, Stuffing Boxes, etc.
The table on page 21 gives dimensions of equal section and eccentric
piston rings. These tables have been in use for several years in a steam engine building plant and found to answer the requirements. Dimensions are given for both lap cut and pin cut types of piston rings. On page 22 dimensions are given of stuffing boxes and glands, and on page 23 a table for the pitch of bolts in water and steam joints is provided. These tables will be found of value when designing steam engines and power plant equipment.

## Setting Corliss Engine Valve Gears

On pages 24 to 27 inclusive are given directions for the setting of Corliss engine valve gears. The explanatory notes on page 27 give all the required information for the understanding of the illustrations on the three previous pages. The directions should be followed step by step, in order to obtain satisfactory results.

## Condenser and Air Pump Data

On pages 28 to 31 inclusive are given formulas for the design of condensers and air pumps, and tables for aid in this work. The quantities found from the formulas are the amount of water required to condense one pound of steam, the amount of condensing water per horsepower, the size of injection pipe, the size of air pump required for a jet condenser, the size of air pump required for a surface condenser, and the required condensing surface. The tables on pages 30 and 31, marked III and IV, respectively, give the amount of water required to condense one pound of steam, according to the formulas given on page 28.

## Direct-connected Engine and Generator Bases

On page 33 is given a table with a diagrammatical illustration showing a lay-out for direct-connected engine and generator bases, as arranged either for
horizontally or vertically parted generators. In cases where the dimensions given cannot be directly applied to the case in hand, they will nevertheless be of value as guides in making similar lay-outs.

## Horsepower of Gasoline Engines

The horsepower of a gasoline engine can, of course, be figured easily enough from the well-known formula

$$
\frac{P L A N}{2 \times 33,000}
$$

in which
$P=$ the mean effective pressure,
$L=$ the stroke in feet,
$A=$ the area of the piston or cylinder bore in square inches,
$N=$ the number of revolutions per minute.

In order, however, to save calculations a table can be prepared, giving at a glance the horsepower of gasoline engines, when the bore and the stroke are known. Such a table is given on page 34. This table shows the indicated borsepower or ideal power. To obtain the actual horsepower from the indicated horsepower given in the table, the figures stated must be multiplied by a factor based on the mechanical efficiency of the mechanism, which may vary from 94 to 70 per cent, and in some cases even less. As a fair average, however, 80 per cent may be used in the calculations. In the table on page 34, the bore is given in the left-hand vertical column, while the stroke is given in a horizontal line at the top; beginning with a stroke which is equal to the bore, which is found in the column headed "Bore +0 ," the stroke increases in each successive column by $1 / 4$ inch up to the final column, which is 2 inches longer than the diameter of the bore. Thus the powers given are for engines varying from 2 -inch diameter by 2 -inch stroke, up to $6 \frac{1}{2}$-inch diameter by 7 -inch stroke. The figures given, are, of course, for a single cylinder, and for multi-
cylinder engines all that is required is to multiply by the number of cylinders. In figuring the table on page 34 the formula stated in the preceding column was used, the mean effective pressure being taken as 90 pounds per square inch, and the number of revolutions as 1,000 per minute. Ninety pounds mean effective pressure corresponds to a compression pressure of $681 / 2$ pounds. This may be verified by using Grover's well-known formula:
$P=2 C-0.01 C^{2}$, where $C$ is the compression.

This compression of $681 / 2$ pounds is taken as an average figure, but the compression may in reality vary all the way from 60 to 100 pounds, and racing automobiles have been built using a compression of 120 pounds.

As cars using 60 pounds compression, we may mention the Franklin and Covert cars; the Thomas and Moline cars use 65 pounds, while the Columbia cars use 100, and the Acme, 102. For these cases, the power corresponding may be found from the table by multiplying the figures there given by the following factors:
For 60 pounds comp., multiply by 0.933


As an example taken at random, illustrating the use of the table, let us find the power of a $51 / 2$-inch bore, 6 -inch stroke, 4 -cylinder engine. In the line of $51 / 2$-inch bore and in the column headed "Bore $+1 / 2$ inch," we find the value 16.2, which, multiplied by 4, gives 64.8 , as the indicated horsepower. Assuming a mechanical efficiency of 80 per cent, we get 51.8 H . P. as the actual horsepower. In Table II, page 34, is given the direct or actual horsepower of gasoline engines, as figured from the empirical formula

$$
\frac{D^{2}}{2.5}=\text { horsepower }
$$

which was recently adopted by the Association of Licensed Automobile Manufacturers. This formula is based on a piston speed of 1,000 feet per minute, which gives 2,000 R. P. M. for a 3 -inch stroke, 1,500 R. P. M. for a 4 -inch stroke, 1,200 R. P. M. for a 5 -inch stroke, and 1,000 R. P. M. for a 6 -inch stroke. This table would then compare with Table I only on the basis of 1,000 R. P. M., which would give a uniform stroke of 6 inches for all engines, regardless of diameter. As an example, take the same engine as above, $51 / 2$-inch diameter by 6 -inch stroke, having 4 cylinders. In the table we find the horsepower given as 12.10 . This, multiplied by 4 , gives us 48.4, which is reasonably near the figure 51.8 for the horsepower, previously found, to indicate that the empirical formula previously given is approximately correct.

A more extended table of the horsepower of automobile engines as based upon the formula of the Association of

Licensed Automobile Manufacturers, is given on page 35. The formula, in its complete form, is

$$
\text { H.P. }=\frac{D^{2} \times N}{2.5}
$$

in which
$D=$ diameter of cylinder, and
$N=$ number of cylinders.
The table gives the horsepower of automobile engines as calculated from this formula for engines having one, two, four and six cylinders, with the diameter of the cylinder varying from $21 / 2$ to 6 inches.

Proportions of Automobile Crankshafts
On pages 36 and 37 are given diagrams and a table for designing automobile crankshafts. The formulas used are given on page 36, and the values of the total pressure on the piston in pounds, $P$, for different compressions, are given in the table on page 37, for varying bores.

## UNIVERSITY OF CALIFORNIA LIBRARY BERKELEY

Return to desk from which borrowed. This book is DUE on the last date stamped below.



No. 16. Wachine Tool Drives.-Speeds and Treeds of Machine Tools; Geared or Single Pulley Drives; Irives for Iligil Speed Cutting Trinls.

No. 17. Strength of Cylinders-Formulas, Charts, and Diagramis.

No. 18. Shop Arithmetic for the Ma chinist.-Tapers; Chanse Gears; Cutting Speeds: Ireds; Indexhy; Gearlig for Cutting Spirals; Angles.

No. 19. Use of Formulas in Mechanics. -With numerous applications.
2\%o. 20. Spiral Gearing.-Rules, Formulas, and Diagrams, cte.

No. 21. Measuring Tools.-History and Development of standand Measulements; Spectal Calipers; Commasios: Micrometor Tools; Protractor's, etc.

No. 22. Calculation of Elements of Machine Design,-Factor of Safety, Strength of Bolts; Riveted Joints; Keys and Keyways, Toggle-joints.

2To. 23. Theory of C:ane Design.-Jih Cranes: Calculation of Shaft. Gears, and Bearings; Force Required to Move Crane Trolleys; Pillar Cranes.

Yo. 24. Examples of Calculating De-signs.-Charts in Designing; Punch and Riveter Frmes; Shear Frames; Billet and Bar Passes; etc.

No. 25. Deep 3Role Drilling. Vethods of Drilling; Construction of Drills:

INo. 25. M-dem Punch and Die Con-struction.- Construction and Uso of Subpress Dies: Modern Blankine Die Construction; Dlawing and Forining Dies.

To. 37. Locomotive Design, Part A. Bnibers, Cylinders, Pipes and Pistons.

2ro. 28. Liocomotive Design, Pirt 1I.-Stephenson Valve Mothon: Theory Calculation ane Deklen af raive Mations The Walschael is Valve Motion.
iro. 29. Locomotive Design, Part III. -Smokion Fxatust Pipe; Frames: Cross-heads; Gulde Brare; fonvecting-rudk; Crank-pins; sxles; Driving-wlicels.
No 30. THoc notive - ), Prit IV. springs, Y'ruchs, vab and jender.

No. 31. Screw Thread rools and Gages.
No. 32. Screw Thread Cuting.-Lathe Change Gears, Tirread Topls, Kinks.

No. 33. Systems and Practice of the Drafting-Žo,om.

सo. 34. Core ant Repneir of Dynamos and Mictors.

No. 35. Tables and Normulas for Shop and Drafting-tioom. - The tise of Formulas; Solation of 'xiankles; Strength of Materials: Gcuing: Screw Threads: Tup Drills: Drill Sizes; Tapers; Keys; Jig Bus ${ }^{1 /} 05$ a, etc.

2Yo. 36. Iron and Steel.-Prineiples of Manulacture and Treatment.

2No. 37. Nevel Gearing.-Rnles aud Fornulas; Exhmples ef Caleulation;

Thoth Outlines: Strongth and Durability; Design: Methods of Cutting Teeth.

No. 38. Grinding and Grinding Ma chines.

No. 39. Fans, Ventilation and Heating. -Fans; Heaters; Shop Heating.
No. 40. Ely Wheels.-Their Purpose, Calculation anu Design.

No. 41. Jigs and Fixtures, Purt I.Principles of Jig and Mixture Design: Drill and Boring Jig Bushings: Lacating Points; Clamping Devices.

Mo. 42. Jigs and Fixtures, Pirt II.Opell and Closed Drill Jigs.

No. 43. Jigs and Fixtures, Palt III Boring and Nilling Fixtures.

Fo. 44. Machine Blacksmithing.-Systems, Tools and Machines used.

Tro. 45. Drop Forging.- Tay-nut of Plant; Methoris of Drop Forging; Dies.
No. 46. Harcuening and Tem ering.Hardening Phants: Treating Hi h-Speed Sted: Hardening Giages; Hurdening
Kinks.
No. 47. Nlectric Overhead Cranes.Desisn and Calculation.

To. 48. Tiles and Filing.-Types of Files; Using and Making Files.

No. 49. Girders for Electric Operhead Cranes.

No. 50. Principles and Practicc of Assembling Machine Tools, Part 1.

No. 51. Principles and Practicu of Assembling Machine Tools, Patt II.

Mo. 52. Advanced Shop Arithnotic for the Machinist.
so. 53. Use of Iogarithms and Iogaritilunc Tables.

Fo. 54. Solurion of Triangles, Part I. - Methods, Fivies and Examples.

No. 55. Solution of Triangles, Part II. -Tables of Nitural Fincitolis.

TV०. 56. Ball Bearings.-Principles of Desigu and Construction.

No. 57. Metal Spinning - Ma chil es, Toots and Mtethetis L'sed
NO. 58. Ifelical and Elliptic Springs.Calculation uld Design.

No. 59. Machines, Tools and Methods of Ahtomisile Minnufacture.

ิo. 60. Construction and Manufacture of Automobilos.

NO. 61. Elacksmith Shop Practice. Model Blnckemith shop; Welding; Forging of IIouk and Chains: Miscellaneous Applianees and Metirous.

No. 62. Tardness and Durability Testing of IIEtals.

No. 63. Nreat Treatment of Steel.lardening, Tempering and Case-Harden17 g .

No. 64. Gage Mraking and Iapping.
No, 65. Formulas and Constants for Cas Engime Dosiga.

Machnvens, the monthly mechanical journal, originator of the Reference and Data Sheet Series, is published in four editions-the Shop Edition, $\$ 1.00$ a year; the Engineering Edition, $\$ 2.00$ a year; the Railway Edition, $\$ 2.00$ a year, and the Foreign Edition, $\$ 3.00$ a " zar.

